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C O M B I N E D  A P P R O A C H  T O  A N A L Y Z I N G  T H E  B U C K L I N G  

OF I D E A L  C Y L I N D R I C A L  SHELLS 

AT G I V E N  P E R T U R B A T I O N S  

N. S. A s t a p o v  and V. M. Kornev  UDC 539.3 

The inevitable initial irregularities arising in the construction of structures or the perturbations in 
loading cause a premature loss of stability (compared with Euler loading) of elastic constructions and are the 
main reason for the scatter in experimental data. Research in this field has been carried out by many authors 
(see, e.g., [1, 2]). 

In the present paper a combined (numerical-analytical) approach to the solution of nonlinear boundary 
problems is expounded, as applied, by way of example, to the study of the buckling of closed ideal cylindrical 
shells under transverse or hydrostatic loading with perturbations taken into account. Numerical analysis of 
the buckling process under transverse and hydrostatic loading shows that the process of successive loading 
of a shell is accompanied by the distortion of the initial section of the critical load spectrum and by the 
reconstruction of buckling modes. 

1. Class i f icat ion of  t h e  P r o b l e m s  and Desc r ip t ion  of t he  C o m b i n e d  Approach .  Practical 
recommendations [1] on calculating the stability of bars, plates, and shells are most frequently oriented to 
the Euler classical critical load with a certain correcting multiplier to be chosen within the range from 1 
to 1/10 depending both on the type of problem and on the possible initial constructional irregularities and 
disturbances arising during the process of loading. The problems of the loss of stability of elastic bars, plates, 
and shells in the presence of external perturbations are described by the equation (or system of equations) 

A~ - AB(~ = 

subject to the corresponding boundary conditions 

C r  = 0, 

(i.i) 

(1.2) 
where (I) is the sought-for function; ~p is a given function that characterizes small external perturbations; A 
and B are the quasilinear operators of the equations; C are the linear operators of the boundary conditions 
given on the contour F; A is a load parameter. The function ~, which is defined on the middle surface of 
a thin-walled construction, describes the external perturbations upon loading. It should be emphasized that 
the boundary-value problem of the geometrically nonlinear theory of shells (1.1), (1.2) differs from the initial 
problem in that it has uniform boundary conditions. 

Below we consider only the initial problems of buckling, whose boundary conditions are reduced to the 
form of (1.2) by selecting or constructing an appropriate (momentless-type) solution of the initial problem. 
The operators A and B have a rather complicated structure. Thus, after dedimensionalization the operator 
A contains a natural small parameter r characterizing the thin-walled character of the shell. Note that the 
parameter r appears as a multiplier in terms containing higher derivatives of the system of equations. The 
presence of the small parameter r and the quasilinearity of the operators A and B may be expected to lead to a 
complicated structure of critical load spectra in linear problems of loss of stability in thin-walled constructions 
and to great variability in the postbuckling behavior of a nonlinear system after the loss of stability. 
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The works of the London Symposium (1982) [2] on the theoretical and practical problems of the 
loss of stability in deformed members have revealed a great variety of approaches to the solution of 
theoretical problems and interpretation of the results obtained. In our opinion, this diversity of approaches 
and interpretations of results is associated with the above two circumstances. We will, therefore, introduce 
a classification of stability problems according to the structure of critical load spectra and according to the 
postbuckling behavior of a deformed system with finite deflections. 

The critical loads A! ~ and the eigenforms r of the linear problems of loss of stability are the 
eigenvalues and eigenfunctions of the following problem: 

A0r ~ - ~(~176 u i = 0; (1.3) 

c !~ = 0. (1.4) 

Here A0 and B0 are linear differential operators with constant coefficients, the operator A0 containing, for 
shells, a small parameter e << 1 that is determined by the thin-walled character of the shell. The form of 
boundary conditions (1.4) coincides with that of boundary conditions (1.2). Let (1.3) and (1.4) be a self-adjoint 
problem. The eigenvalues (critical loads) are ordered in the standard way [3]: 

0 < A~ ~ ~ A? ) ~< A~ ~ ~<... <~ )~!0) ~<. . . ,  (1.5) 

and the eigenfunctions are orthogonal: 

= (1.6) 

($ij are the Kronecker symbols). In classifying the spectra of critical loads, the neighborhood of the smallest 

eigenvalue ,~0) corresponding to the Euler classical critical load is of the greatest practical interest. Therefore, 
we classify the spectra according to the multiplicity of the first eigenvalue and to the presence of a point of 
condensation in the initial part of the spectrum (when in the close neighborhood of A~ ~ there are many other 
eigenvMues). 

According to the presence of multiplicity there are two cases: 1) Ia, the first eigenvalue is separated 
from the second, i.e., )~0) is a prime eigenvalue: 

0 < < .< .< .< . . . ;  ( 1 7 )  

2) Ib, the first j >/2 eigenvalues coincide, i.e., ~0) has multiplicity j:  

0 < )~I 0)= )~0) . . . . .  ~.0) < ,~0)1 ~ . . . .  (1.8) 

According to the presence of a point of condensation in the initial part of the spectrum there can also 
be two cases: IIa, where there is no point of condensation in the initial part of the spectrum, and IIb where 
the spectrum starts with a point of condensation of critical loads [4, 5]. 

Recall that the cases Ia and IIa involve the problem of the loss of stability of a longitudinally compressed 
hinge-supported bar [1] (all the eigenvalues are different and the spectrum is sparse in the neighborhood of 

~0)). In accordance with the suggested classification, the problem of the loss of stability of a longitudinally 
compressed hinge-supported bar lying on an elastic foundation can belong, depending on the geometric and 
stiffness parameters [1, 6], to one of the following types: Ia, IIa, or Ib, IIa, or Ia, IIb, or Ib, IIb. Note that 
the presence of the point of condensation precisely in this problem is most likely of no practical significance, 
since in this case the relationship of stiffness parameters is very exotic. 

In problems of the stability of thin shells there are three types of critical load spectra [4]. Figures 1 and 
2 present schematically the spectra of the above problems, respectively, in the absence of a condensation point 
in the neighborhood of A~0) and in the presence of a condensation point at the start of the spectrum (dA/d)~ 
is the function characterizing the density of eigenvalues). Figure 1 shows the diagrams of loading cylindrical 
shells by hydrostatic and transverse pressure; the critical load spectra corresponding to these problems do not 
start from a condensation point. 
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Figure 2 depicts the diagrams of loading a spherical shell by hydrostatic pressure and a cylindrical 
shell by longitudinal compressive forces; the critical load spectra corresponding to these one-dimensional and 
two-dimensional problems start from a condensation point. Note the solvability conditions (qo, B0r ~ = 0 

(i = 1, 2 , . . . ,  j )  of problem (1.1) and (1.2) when A = A0, B = B0, and A --* A~~ the number of these 
conditions j coincides with the multiplicity of the first eigenvalue [see (1.8)]. 

The above classification of the linear problems of buckling was tested by comparing the behavior of the 
simplest solutions [7] describing the stability loss process with the results of mass experiments on determining 
the critical load of constructively orthotropic, longitudinally compressed cylindrical shells [8]. The character 

of the spectrum in the neighborhood of A~ ~ of the linear problems on the loss of stability of longitudinally 
compressed cylindrical orthotropic shells (presence or absence of condensation points) predicts very well the 
reproducibility and scatter of experimental results on the critical loads on thin-walled shells [7, 8]. In the case 
of finite deflections in a thin-walled system the initial region of the spectrum is distorted. 

We now turn to the classification of the problems on the buckling of deformed constructions according 
to postbuckling behavior when a certain trivial solution branches into a prime solution (X~ ~ is a prime 

eigenvalue) or complex solutions (X~ ~ has multiplicity j = 2). The possible cases are as follows [1, 9]: IIIa, 
stable postbuckling behavior; IIIb, indifferent postbuckling behavior; IIIc, unstable postbuckling behavior 
(Fig. 3, respectively, curves a-c for an ideal system and curves a~-d for a system with perturbations). This 
reasoning is true only for small deviations of the system, i.e., at small norms I1 11 of the normal deflection of 
the system. The classification proposed is valid only for prime eigenvalues and eigenvalues divisible by 2; for 
j > 2 more precise definitions are necessary. 

Thus, the entire range of problems on the buckling of deformed constructions is given by the diagram 
in Fig. 4. The stability of a longitudinally compressed hinge-supported bar Ia-IIIa is the simplest case: X~ ~ 

is a prime eigenvalue; in the neighborhood of A~ ~ the spectrum is sparse; the postbuckling behavior is stable 

at X > X~ ~ The most complicated stability problems appear to be the problem of the stability of a thin 
spherical orthotropic shell upon hydrostatic loading and the problem of the stability of a thin longitudinally 
compressed cylindrical orthotropic shell; as a rule, in the above classification these problems correspond to 
Ib, IIb, IIIc: X~ ~ is a multiple eigenvalue; in the neighborhood of A~ ~ there is a point of condensation; the 

postbuckling behavior is unstable at X > XI ~ Recall that these problems have been solved in the classical 
statement without defining the modes of stability loss [10], the critical loads coinciding for one- and two- 
dimensional statements. Let us now pass on to the solution of problem (1.1), (1.2) for small finite deflections 
of the system being deformed. The quasilinear operators A and B, when there are small deflections, can be 
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written in the form 

A = A 0 + / ~ A I + # 2 A 2 + . . . ,  B = B 0 + / z B I + # 2 B 2 + . . . ,  

where A0 and B0 are linear operators [see Eq. (1.3)]; Ai and Bi (i > 0) are not necessarily linear differential 
operators; /~ << 1 is a small numerical parameter characterizing the amplitude of normal shell deflection. 
Many problems of the stability of mechanical systems can be reduced [1-3, 9] to the search for the eigenvalues 
and eigenfunctions of equations of the (1.1) type subject to certain boundary conditions. For instance, the 
equilibrium equation for the curved axis of a longitudinally compressed bar can be written [6, 11] in the 
form of (1.1) with a small parameter # that  characterizes the deviation of the system from the rectilinear 
(nonbuckled) state and is approximately proportional to the squared ratio of the deflection amplitude to the 
bar length. The linearized system of equations relating the function of stresses to the normal deflection of a 
nonideal shallow shell can also [12] be written in the form of (1.1) with a small parameter/z proportional to 
the ampli tude of the initial irregularities. 

At # ~ 0 we obtain a problem, related to (1.3) and (1.4), on eigenvalues Ai and functions ~i: 

A~i - )~iB~i = 0; (1.9) 

= o. (1.1o) 

The eigenvalues Ai and the eigenfunctions ~i are determined for given finite deflections of the system, 
i.e., the small parameter  # and the operators Aj and B i at j ~> 1 are assumed to be specified. The expressions 
for the eigenfunctions and the eigenvalues are sought for in the form of asymptotic series in terms of the 
parameter/z:  

o O  O o  O O  

+ Z r  (0) , = �9 (1.11) 
k=] k=l j=l 

Equating the coefficients of the same powers of # and taking into account the normalization conditions (1.6), 

one can formally [13, 14] find the coefficients of the expansions (1.11). Thus, in the neighborhood of A (~ 
we obtain a parametric relationship of (b, and A, in terms of the small parameter #. The results of testing 
of the above-described approach to the well-studied classical problem of calculating the deflection ~ of an 
ideal bar under longitudinal compressing load A1 in the neighborhood of the first critical load A~ ~ [curve 
(a) in Fig. 3] are reported in [15]. A study of the buckling of an ideal bar on an elastic foundation using 
the perturbat ion technique [6, 11] has shown the possibility of unstable postbuckling behavior [curve (c) in 
Fig. 3], and experiments on real bars corroborated this possibility and demonstrated the reconstruction of 
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the buckling modes, particularly when the corresponding eigenfunction-and-eigenvalue problem has multiple 
" eigenvalues or a comparatively dense spectrum in the neighborhood of A~ ~ In shell stability problems a 

simplified approach ignoring the spectrum density [5, 7] does not normally yield sufficient information on the 
behavior of a thin-walled construction upon buckling. 

The solution of problem (1.i) and (1.2) is sought in the form of a series in terms of the specially 
constructed eigenfunctions ~i of problem (1.9) and (1.10) (see [3]): 

oo 

r = ~_j ai+i. (1.12) 
i=I 

It appears expedient to retain in (1.12) all terms of the same order of smallness [5]. The buckling of real 
constructions in the presence of perturbations upon loading is accompanied by a gradual increase in the 
amplitude of the initial deflection [curves (d-c') in Fig. 3]. It is therefore suggested that the process of 
successive additional loading of a system being deformed should be combined with constructing the distorted 
region of the spectrum of the deformed system for finite deflection in each additional loading step. The 
additional loading step AA is selected by the least eigenvalue A~ ~ of the linear stability loss problem. In 
the first step of additional loading (~ = A)~) in relationships (1.11) and (1.12) use is made of complete 

information on the eigenfunctions ~!0) and eigenvalues ~!0) of the classical stability problem (1.3) and (1.4); 
from the solution of (1.12) we find the small parameter/,(I) (as a rule, it is connected with the amplitude 
of the normal deflection of the deformed system). In the second additional loading step (~ = 2A~), we first 
obtain exhaustive information on the initial part of the spectrum of problem (1.9), (1.10) for a nonideal system 
with the parameter/rid and then, in (1.12), use the corrected eigenfunctions ~ and eigenvalues hi of problem 
(1.9), (1.10); from the constructed solution of (1.12) we find the small parameter #(2), etc. It is expedient to 
use the above approach only when there are analytical expressions for the solution of problem (1.3) and (1.4). 

It is difficult to obtain any estimates for the accuracy of the suggested approximate method of 
constructing a solution in the general case. In a particular case [15], however, estimates of the accuracy 
can be obtained by comparing an exact solution of the problem with the suggested approximate solution. In 
[15] a detailed study is made of the problem on the buckling of an eccentrically compressed bar, i.e., of a 
nonideal construction with stable postbuckling behavior [curve (d) in Fig. 3]. In the present work, the same 
combined approach is used to analyze the buckling of a construction with unstable postbuckling behavior 
[curve (c') in Fig. 3]. 

2. Basic Equat ions .  To study the process of buckling of shallow cylindrical shells, let us use the 
classical nonlinear system of equations with respect to the normal deflection and to the stress function [17]. 
We perform the standard nondimensionalization, i.e., divide the deflection by the shell thickness h, divide 
the lengths along the longitudinal coordinate x and along the circular coordinate y by the cylinder radius R, 
and nondimensionalize the stress function by means of the factor (ERh2)  -1. After nondimensionalization the 
known normal deflection can be written as 

w = r lw~ m a x [ w ~  = 1, (2.1) 

where 7/is a parameter that characterizes the deflection amplitude w. 
Let relationship (2.1) be fulfilled in nonlinear terms of the transformed classical system of equations 

of shallow shell theory, but only for one of the factors. Then we have 

W 0 0 e 2 A A w  + fz~ -- # (fvvw~ + h ~  vv -- 2byway)  -- A (a lwzz  + a2wvv) = z, 

AAT -- wzz + (1/2) # (wx~w~ + wvvw~ -- 2wzvw~ = O, A w  = wzz + wvv, (2.2) 

e 2 = [ 1 2 ( 1 - v 2 ) 1 - 1 ( h / R )  2, # = r l h / R ,  O < . x < ~ L / R ,  O < y < 2 ~ r  

under the corresponding boundary conditions (1.2). Here w and f are the normal deflection and the stress 
function; L is the length of the cylinder shell; A is the loading parameter proportional to the constant 
component of the forces in the longitudinal and circular directions; al and a 2  are the coefficients (for transverse 
loading a 2  = - - 1 ,  a 1 = 0; for hydrostatic pressure a2  = - - 1 ,  a l  ---- -1/2);  z is the known additional load; E and 
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v are the Young's modulus and the Poisson's coefficient;/z is a small parameter characterizing the imperfection 
o f  the system (at /z  = 0 the linear theory of shells is obtained). The nonlinear terms in the second equation 
of system (2.2) are writ ten in symmetric form. 

3. D e s c r i p t i o n  of  t h e  T e c h n i q u e  of  C o n s t r u c t i n g  a So lu t i on .  System (2.2) can be written in 
the operator form 

where the operators .4 and B,  and the right-hand side Z are defined by the relations 

A = A 0 + # A a ,  B = B 0 ,  

A o =  _()z~: AA ' 0 0 ' 0 ' 

0 _[w0x( + w0( )= _ 2 0( ] 

Aa = (1/2)[w~ )xx + w~ )uy - 2w~ )~u] 0 J " 

Note that  the operator A consists of the main part and terms with the natural small parameter #. For the 
deformation of a nonideal cylindrical shell, the function w ~ (z, V) in relationships (3.2) describes the initial 
deflection and, in the last row of the operator A1, the coeff• 1/2 is replaced by 1. 

We assume that  all the coefficients of the operator A1 are known, i.e., we seek a solution for Eq. (3.1) 
on a given function w ~ having continuous second derivatives. Then it is natural to construct the solution in 
the form of the series 

wi (3.3) 
= ai fi 

i=1 

in terms of stability loss eigenforms if the latter are known or can readily be constructed. Substituting 
the expression of solution (3.3) into Eq. (3.1), after obvious transformations, we obtain a relationship for 
determining the coefficients ai of the Fourier series: 

a i  = Z i / ( , ~ i  - -  ~ ) .  

Here hi are the eigenvalues of the stability loss problem 

A fi - ~ i B  fi =0 ,  6' 

(3.4) 

to which correspond the eigenfunctions wi and fi; A and B are the operators defined in (3.2); and C' is the 
operator of the boundary conditions corresponding to the conditions of the hinge support of the ends and to 
the momentless prebuckling state; the constants zl are determined from the simple relationships 

It is assumed that  for the eigenfunctions the following conditions of orthogonality and normalization are 
fulfilled: 

In relationships (3.6) and (3.7) by the scalar product is meant the functional 

2x MR 

f i ' L  o o  
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If solution (3.3) has already been constructed for an arbitrary loading parameter )~ and the critical 
loading parameter A* at which the system loses stability has been determined, this solution can readily be 
analyzed for a particular A, because the decrease in the coefficients ai of the Fourier series is determined by 
the assigned transverse load and by the spectrum of problem (3.5) (see [4, 7, 18]). 

4. S t u d y  of the  Ini t ia l  Region of the  Crit ical  Load Spec t rum.  Let us consider the numerical 
construction of the spectrum. The operators A and B of problem (3.5) contains terms with the small parameter 
~, and hence it is natural to use the classical perturbation theory [13, 14] and to write the eigenfunctions wi 
and fi and eigenvalues Ai in the form of asymptotic series in terms of the parameter #: 

OO o O  OO 

~, ~!o) + ~ .  ~. (~) =/!o) A!o) ,~!~) (4.1) = . w , ,  s, + E . k S !  k), ~ ,=  + E  , ~<<1 
k=l k=l k=l 

We restrict relationships (4.1) to first-order infinitesimal terms. 
To effectively construct the initial region of the spectrum by the perturbation method it is desirable 

to have analytical expressions for the eigenfunctions w! ~ and f[0) and eigenvalues A!0) of the unperturbed 
problem (1.3) and (1.4), whose eigenwlues are at least multiples of 2: 

~?) = ~?) < ~?) = ~4(0) <~ . . .  <. ~!o) = ~!o) < . . . . ,  (4.2) 

because, e.g., the component 

w!0)= { 7,,,cosniy.sin~rRx/L, l f ~  (4.3) 
Vnl sin niy. sin ~rRx/L, 7,~i = ni V ~rL" 

In this case, to the odd i in (4.2) and (4.3) corresponds cos niy and to the even i, sin niy (ni is the number of 
waves along the circumferential coordinate). According to the classification in Section 1, the problems of the 
buckling of a cylindrical shell of mean length belong to the class Ib, IIa, IIIc, and hence in their numerical 
realization a limited number of degrees of freedom and the instability of the postbuckling behavior of the 
system are taken into account. In the presence of perturbations, the multiple eigenvalues (4.2) are prime 
if in expansions (4.1) we retain all terms up to cos2niy and sin2niy. The corrections to the eigenvalues 
have different signs. Hence, the least critical load for a nonideal system is less than for an ideal system and, 
therefore, under successive additional loading the real system loses its stability sooner than the ideal one. 

The results of calculation of the initial region of the spectrum using perturbation theory agree well 
with the result of analytical investigation of this region by the Courant method [4, 7, 19]. 

5. Numer i ca l  Cons t ruc t ion  of the  Solution and Discussion. When constructing a numerical 
solution, it is necessary to curtail series (3.3) so that the main information could be retained. To this end, the 
simplest plan to be followed is to compare the absolute values of the coefficients ai of the Fourier series. We 
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retain all terms of the expansion for which 

lajl/> pm.ax lail. (5.1) 
I 

In the calculations performed the constant p was chosen to be equal to 1/2, 1/3, and 1/10. Retaining a finite 
number of terms of series (3.3), we replace the system with distributed parameters (with an infinite number 
of degrees of freedom) by a system with a finite number of degrees of freedom, all of them equal in status. 

Numerical analysis of the process of buckling is performed as follows. First, a step for the load A is 

chosen (e.g., AA = 0.01min A!~ In each kth step, the solution of (3.3) is constructed. We determine the 
parameter 7/ [see (2.1)], calculate the small parameter # = ~lh/R, and refine the eigenforms of stability loss 
and the critical loads of a nonideal system using the perturbation method at normal deflections known from 
the (k - 1)th step. 

We further pass over to the (k + 1)th step for a load equal to (k + 1)AA, the function w ~ for this step 
being taken from the kth step. Calculations start from the first step (k = 1), while w ~ = 0 for the zeroth 
step. The numerical calculations end when the load parameter (k + 1)AA in the next (k + 1)th step exceeds 
or coincides with the least critical load A1 determined in the previous kth step for a nonideal system, i.e., 
(k + 1) AA /> A1; this buckling mode corresponds to the unstable postbuckling behavior of the system. The 
critical load is taken to be A* = kAA (Fig. 5, curve 1 describes the buckling of the system and curve 2, the 
changes in A1). 

Presented below are the calculation results for shells loaded by a uniform external transverse pressure 
and a comparatively low additional external normal pressure: 

100 
z = # ~ a,~ (cos ny + sin ny) sin 7rRx 2t5/ 1 

n=4 ----~--, an-n2~rLTn, 7 n = n V ~ - -  ~. (5.2) 

Since the classical nonlinear equations are the subject of investigation, all states with a small index of 
variability (n < 4) along the circular coordinate are excluded from consideration�9 Note that in every kth 
step (k > 1) the function z defined in (5.2) is reexpanded as a series of refined eigenforms of stability loss. 

Figure 6 presents typical deformation curves 1-3 (0 = 0.01, 0.1, 0.3) at R/h = 100, p = 1/3, L/R  = 1. 
Tables 1-3 list the results of determination of the critical load A*. Here n* is the number of waves along 
the circular coordinate for the least critical load of the linear problem; nj are the mode numbers satisfying 
relationship (5.1) in the last step of additional loading; symbols s and c stand for sin and cos; and the 
underlined mode number corresponds to maxlail. The calculations for Tables 1 and 2 were performed at 
p = 1/3 and L/R  = 1, and for Tables 2 and 3, at R/h = 100 (n* = 8). The buckling modes are found to 
be reconstructed upon additional loading�9 This reconstruction is associated with a deviation of the spectrum 
of the nonlinear system upon finite deflections compared with the initial system�9 All the calculation results 
of Table 1 were duplicated at p = 1/2 and 1/10 (L/R = 1). The results that, in our opinion, are the most 
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TABLE 1 

R/h 

25 
(." = 6) 0 

0.01 0.97 5c, 5s, 6c, 6s 
0.1 0.92 5s, 6c, 6s 
1 0.62 4s, 5s, 6s 

5O 
= 7) 

~* I nj 
0.97 7c, 7_s 
0.90 6s, 7c, 7...s 
0.53 5s, 6s, 7s 

100 
(,r = 8) 

0.96 
0,86 
0.42 

7"~j 

8c, _Ss 
7s, 8_s, 9s 
_7S, 8S 

TABLE 2 

0 ,/ 

0.1 1.56 
0.3 3.56 
0.5 5.17 
0.6 5.70 
0.7 5.80 
0.8 5.82 
0.9 5.31 
1.0 5.68 

0.86 
0.75 
0.65 
0.60 
0.55 
0.50 
0.46 
0.42 

nj 

7s, 8s, 9s 
7s, 8s, 9s 
7s, 8s 
_Ts, 8s 
Is, 8s 
6s, _Ts, 8s 
6s, 7s, 8s 

Is, 8s 

TABLE 3 

1/2 0.43 
1/3 0.42 

1/10 0.42 

nj 

Zs 

Zs, 8s 
4s, .. . ,  _7s, . . . ,  l ls  

interesting are listed in Table 3; they show that  it often suffices to restrict oneself to the parameter  p ~< 1/3 in 
determining the number of equivalent degrees of freedom [see relationship (5.1)]. The calculation results that 
are not given in Table 3 completely coincide in the magnitude of the critical load. Since perturbat ion theory 
was used in determining A, it is desirable to refine the calculations in the cases where A < 0.6. 

In calculating and analyzing the buckling problems we took into account the following: 1) the 
multiplicity of the first eigenvalue, 2) the spectrum density in the neighborhood of the first eigenvalue, 3) the 
postbuckling behavior of the system (see Section 1). 

Figuie 7 presents the typical deflections along the circumferential coordinate for the specified 
parameters,  which corresponds to Table 1; one can readily notice the reconstruction of the buckling modes 
upon successive additional loading from 0.85 to 0.92 of the Euler load. 

The above analysis of the buckling of cylindrical shells shows the process of additional loading to be 
accompanied by distortion of the initial region of the critical load spectrum and by reconstruction of the 
buckling modes. The distortion of the spectrum is due to both additional forces arising in the middle surface 
and additional normal deflections. The reconstruction of the buckling modes is due to the distortion of the 
spectrum of the nonlinear system upon finite deflections in comparison with the spectrum of the initial system. 
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